<\/a><\/p>\nStudent<\/strong> I’m working on composite functions, but do not understand what the \u00abdomain\u00bb is or how to find it. I can work through the problem, but am lost when it comes to the domain. Please help!<\/p>\n(Tutor)<\/strong> Hi, my name is Juan. How are you today?<\/p>\nStudent<\/strong> I’m well. How are you?<\/p>\n(Tutor)<\/strong> \u00a0I’m good :D, ok let’s get started!<\/p>\nStudent<\/strong> ok. I’m needing to understand, what the \u00abdomain\u00bb is and how to find it?<\/p>\n(Tutor)<\/strong> \u00a0Sure!<\/p>\nthe domain is all the values that \u00abx\u00bb can take
\nfor example
\nlet’s find the domain of f(x)
\nf(x)=4x+1
\nin that case does x have any restriction?
\nI mean is there an x value that we can’t use?<\/p>\n
Student<\/strong> no. I don’t think so<\/p>\n(Tutor)<\/strong> correct
\nso the domain of that function is all real numbers
\nfor example
\nthis function
\nis there an x value that we can’t use?<\/p>\nStudent<\/strong> 0<\/p>\n(Tutor)<\/strong> You got it!<\/p>\nStudent<\/strong> ok<\/p>\n(Tutor)<\/strong> \u00a0so the domain of this function is
\nall real numbers except zero
\nis it more clear?
\nor not?
\nshould I try to explain it in a different way?<\/p>\nStudent<\/strong> yes.. domain is all values that x can be for the given function<\/p>\n(Tutor)<\/strong> \u00a0correct! \ud83d\ude00<\/p>\nStudent<\/strong> ok<\/p>\n(Tutor)<\/strong> let’s go back to the problem<\/p>\nStudent<\/strong> ok<\/p>\n(Tutor)<\/strong> \u00a0in this case
\nthe domain of f(x) is all real numbers
\nhow about g(x)?<\/p>\nStudent<\/strong> I think i’m still slightly confused.<\/p>\n\u00a0(Tutor)<\/strong> in that function
\nis there any x value that we can’t use?<\/p>\nStudent<\/strong> no, i don’t think so<\/p>\n(Tutor)<\/strong> Correct<\/p>\nStudent<\/strong> ok<\/p>\n(Tutor)<\/strong> so the domain is all real numbers<\/p>\nStudent<\/strong> yes<\/p>\n(Tutor)<\/strong> \u00a0Clue: the domain of a polynomial is always all real numbers
\nf(x) and g(x) are polynomials<\/p>\nStudent<\/strong> ok. i see<\/p>\n(Tutor)<\/strong> so the domain will be all real numbers
\nand how about (fog)(x)<\/p>\nStudent<\/strong> f(g(x))<\/p>\n(Tutor)<\/strong> correct \ud83d\ude00
\nbut they are asking for gof<\/p>\nStudent<\/strong> yes<\/p>\n(Tutor)<\/strong> \u00a0ok do you know how to find it?<\/p>\nStudent<\/strong> g(4x+1)<\/p>\n(Tutor)<\/strong> \u00a0yeah!
\nthen
\nwe have to use g
\nhow would it be?
\ndo you need help?<\/p>\nStudent<\/strong> i think i’ve got it. I had trouble with the buttons<\/p>\n\u00a0(Tutor)<\/strong> \u00a0ohhh
\nwhat are you trying to do?<\/p>\nStudent<\/strong> \u00a02(4x +1)squared + 5(4x+1)<\/p>\n(Tutor)<\/strong> \u00a0yeah!<\/p>\nStudent<\/strong> \u00a02(16x 2<\/sup> + 8x + 1) + 20x + 5
\n32x 2<\/sup> + 16x + 2 + 20 + 5<\/p>\n(Tutor)<\/strong> \u00a0it is 20x
\nbut well done!<\/p>\nStudent<\/strong> \u00a0equals 32x 2<\/sup> + 36x +7<\/p>\n(Tutor)<\/strong> \u00a0\ud83d\ude00
\nYou got it!
\nAnd what’s the domain of that function?
\nI understand what you wrote
\nbut it should be written
\nlike…<\/p>\nStudent<\/strong> \u00a0right, negative on the left<\/p>\nStudent<\/strong>\u00a0Thank you so much for your help! \ud83d\ude42<\/p>\n(Tutor)<\/strong> \u00a0No problem! It was great to work with you!
\nBye<\/p>\nStudent<\/strong> \u00a0thanks. Bye<\/p>\n <\/p>\n
\u00a0Colaborador: Juan Cruz, Tutor Colombiano de \u00c1lgebra<\/strong><\/span><\/p>\n","protected":false},"excerpt":{"rendered":"Student I’m working on composite functions, but do not understand what the \u00abdomain\u00bb is or how to find it. I can work through the problem, but am lost when it comes to the domain. Please help! (Tutor) Hi, my name is Juan. How are you today? Student I’m well. How are you? (Tutor) \u00a0I’m good…<\/p>\n","protected":false},"author":9,"featured_media":3608,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"gallery","meta":{"footnotes":""},"categories":[81,89,88],"tags":[],"post_series":[],"class_list":["post-197","post","type-post","status-publish","format-gallery","has-post-thumbnail","hentry","category-algebra","category-ejemplos-de-tutorias","category-matematicas","post_format-post-format-gallery","entry","has-media"],"aioseo_notices":[],"_links":{"self":[{"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/posts\/197","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/users\/9"}],"replies":[{"embeddable":true,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/comments?post=197"}],"version-history":[{"count":1,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/posts\/197\/revisions"}],"predecessor-version":[{"id":3609,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/posts\/197\/revisions\/3609"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/media\/3608"}],"wp:attachment":[{"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/media?parent=197"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/categories?post=197"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/tags?post=197"},{"taxonomy":"post_series","embeddable":true,"href":"https:\/\/www.latinhire.com\/es\/wp-json\/wp\/v2\/post_series?post=197"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}